Какое значение имеет длина волны. Длины световых волн Длина волны электромагнитного излучения формула

Длину волны можно также определить:

  • как расстояние, измеренное в направлении распространения волны, между двумя точками в пространстве, в которых фаза колебательного процесса отличается на 2π;
  • как путь, который проходит фронт волны за интервал времени, равный периоду колебательного процесса;
  • как пространственный период волнового процесса.

Представим себе волны, возникающие в воде от равномерно колеблющегося поплавка, и мысленно остановим время. Тогда длина волны - это расстояние между двумя соседними гребнями волны, измеренное в радиальном направлении. Длина волны - одна из основных характеристик волны наряду с частотой , амплитудой , начальной фазой, направлением распространения и поляризацией . Для обозначения длины волны принято использовать греческую букву λ {\displaystyle \lambda } , размерность длины волны - метр.

Как правило, длина волны используется применительно к гармоническому или квазигармоническому (например, затухающему или узкополосному модулированному) волновому процессу в однородной, квазиоднородной или локально однородной среде. Однако формально длину волны можно определить по аналогии и для волнового процесса с негармонической, но периодической пространственно-временной зависимостью, содержащей в спектре набор гармоник. Тогда длина волны будет совпадать с длиной волны основной (наиболее низкочастотной, фундаментальной) гармоники спектра.

Энциклопедичный YouTube

    1 / 5

    Амплитуда, период, частота и длина волны периодических волн

    Звуковые колебания - Длина волны

    5.7 Длина волны. Скорость волны

    Урок 370. Фазовая скорость волны. Скорость поперечной волны в струне

    Урок 369. Механические волны. Математическое описание бегущей волны

    Субтитры

    В прошлом видео мы обсуждали, что произойдёт, если взять, скажем, верёвку, дёрнуть за левый конец – это, конечно, может быть и правый конец, но пусть будет левый - итак, дёрнуть вверх, а потом вниз и затем назад, в исходное положение. Мы передаём верёвке некое возмущение. Это возмущение может выглядеть примерно так, если я дёрну верёвку вверх и вниз один раз. Возмущение будет передаваться по верёвке приблизительно таким образом. Закрасим чёрным цветом. Cразу после первого цикла – рывка вверх и вниз - верёвка будет выглядеть примерно так. Но если немного подождать, она приобретёт примерно такой вид, учитывая, что мы дёрнули один раз. Импульс передаётся дальше по верёвке. В прошлом видео мы определили это возмущение, передающееся по верёвке или в данной среде, хотя среда не обязательное условие. Мы назвали его волной. И, в частности, данная волна - это импульс. Это импульсная волна, потому что здесь в сущности было только одно возмущение верёвки. Но если мы продолжим периодически дёргать верёвку вверх и вниз с регулярными интервалами, то она будет выглядеть примерно, примерно так. Я постараюсь изобразить как можно аккуратнее. Она будет выглядеть вот так, и колебания, или возмущения, будут передаваться вправо. Они будут передаваться вправо с некой скоростью. И в этом видео я хочу рассмотреть именно волны такого типа. Представьте, что я периодически дёргаю левый конец верёвки вверх и вниз, вверх и вниз, создавая периодические колебания. Мы назовем периодическими волнами. Это периодическая волна. Движение повторяется снова и снова. Сейчас я хотел бы обсудить некоторые свойства периодической волны. Во-первых, можно заметить, что при движении верёвка поднимается и опускается на некоторое расстояние от первоначального положения, вот оно. Насколько удалены высшая и низшая точки от начального положения? Это называется амплитуда волны. Это расстояние (выделю его пурпурным цветом) - это расстояние называется амплитуда. Моряки иногда говорят о высоте волны. Под высотой обычно подразумевается расстояние от подошвы волны до её гребня. Мы говорим об амплитуде, или расстоянии от изначального, равновесного положения до максимума. Обозначим максимум. Это высшая точка. Высшая точка волны, или ее вершина. А это подошва. Если бы вы сидели в лодке, вас бы интересовала высота волны, все расстояние от вашей лодки до высшей точки волны. Ладно, не будем удаляться от темы. Вот что интересно. Далеко не все волны создаются мной, дёргающим левый конец верёвки. Но, думаю, вы поняли, что эта схема может демонстрировать множество разных типов волн. И это по сути отклонение от средней, или нулевой, позиции, амплитуда. Возникает вопрос. Ясно, как далеко отклоняется верёвка от средней позиции, но как часто это происходит? Сколько нужно времени, чтобы веревка поднялась, опустилась и вернулась назад? Как долго продолжается каждый цикл? Цикл – это движение вверх, вниз и на изначальную точку. Сколько длится каждый цикл? Можно сказать, какова продолжительность каждого периода? Мы сказали, что это периодическая волна. Период – это повторение волны. Продолжительность одного полного цикла называется периодом. И период измеряется временем. Может быть, я дёргаю верёвку каждые две секунды. Чтобы она поднялась, опустилась и вернулась к середине, нужно две секунды. Период – это две секунды. И другая близкая характеристика – сколько циклов в секунду я делаю? Другими словами, сколько секунд приходится на каждый цикл? Давайте это запишем. Сколько циклов в секунду я произвожу? То есть, сколько секунд приходится на каждый цикл? Сколько секунд приходится на каждый цикл? Так что период, например, может составлять 5 секунд на один цикл. Или, возможно, 2 секунды. Но сколько циклов происходит в секунду? Зададим противоположный вопрос. Не сколько секунд занимает подъём вверх, спуск вниз и возврат к середине. А сколько в каждую секунду умещается циклов спуска, подъёма и возврата? Сколько циклов происходит в секунду? Это свойство, противоположное периоду. Период обычно обозначается прописным Т. Это частота. Запишем. Частота. Она обычно обозначается строчным f. Она характеризует число колебаний в секунду. Так что, если полный цикл занимает 5 секунд, это значит, что в секунду у нас будет происходить 1/5 цикла. Я просто перевернул вот это соотношение. Это вполне логично. Потому что период и частота – обратные друг другу характеристики. Это – сколько секунд в цикле? Сколько времени нужно на подъём, спуск и возврат? А это – сколько спусков, подъёмов и возвратов в одной секунде? Так что они обратны друг другу. Можно сказать, что частота равна отношению единицы к периоду. Или период равен отношению единицы к частоте. Так, если верёвка вибрирует с частотой, скажем, 10 циклов в секунду… И, кстати, единица измерения частоты - это герц, так что запишем это как 10 герц. Вы, наверное уже слышали нечто подобное. 10 Гц означает просто 10 циклов в секунду. Если частота - это 10 циклов в секунду, то период равен ее отношению к единице. Делим 1 на 10 секунд, что вполне логично. Если верёвка может 10 раз за секунду подняться, опуститься, и вернуться в нейтральное положение, значит за 1/10 секунды она сделает это один раз. Ещё нас интересует, как быстро волна распространяется в данном случае вправо? Если я тяну за левый конец верёвки, как быстро она двигается вправо? Это скорость. Чтобы узнать это, нам нужно вычислить, какое расстояние волна проходит за один цикл. Или за один период. После того как я дернул один раз, как далеко уйдёт волна? Каково расстояние от этой точки на нейтральном уровне до этой точки? Это называется длина волны. Длина волны. Ее можно определить множеством способов. Можно сказать, что длина волны – это расстояние, которое проходит начальный импульс за один цикл. Или что это расстояние от одной высшей точки до другой. Это тоже длина волны. Или расстояние от одной подошвы до другой подошвы. Это тоже длина волны. Но в общем длина волны – это расстояние между двумя одинаковыми точками волны. От этой точки до этой. Это тоже длина волны. Это расстояние между началом одного полного цикла и его завершением в точно такой же точке. При этом, когда я говорю про одинаковые точки, эта точка не считается. Потому что в данной точке, хотя она в той же позиции, волна опускается. А нам нужна точка, где волна находится в той же самой фазе. Посмотрите, здесь идет движение вверх. Так что нам нужна фаза подъёма. Это расстояние – не длина волны. Чтобы пройти одну длину, нужно пройти в ту же самую фазу. Нужно, чтобы движение было в том же направлении. Вот это тоже длина волны. Итак, если мы знаем, какое расстояние волна проходит за один период… Давайте запишем: длина волны равна расстоянию, которое проходит волна за один период. Длина волны равна расстоянию, которое проходит волна за один период. Или, можно сказать, за один цикл. Это одно и то же. Потому что период – это время, за которое волна завершает один цикл. Один подъём, спуск и возврат к нулевой точке. Так что, если мы знаем расстояние и время, за которое волна его проходит, то есть период, как мы можем вычислить скорость? Скорость равна отношению расстояния ко времени движения. Скорость - это отношение расстояния ко времени движения. И для волны скорость можно было бы обозначить как вектор, но это, я думаю, и так понятно. Итак, скорость отражает то, какое расстояние волна проходит за период? А само расстояние – это длина волны. Волновой импульс пройдёт ровно столько. Такой будет длина волны. Итак, мы проходим это расстояние, и сколько времени это занимает? Это расстояние проходится за период. То есть, это длина волны, делённая на период. Длина волны, делённая на период. Но мы уже знаем, что отношение единицы к периоду - это то же самое, что и частота. Так что можно записать это как длину волны… И, кстати, важный момент. Длина волны обычно обозначается греческой буквой лямбда. Так что, можно сказать, скорость равна длине волны, делённой на период. Что равно длине волны, умноженной на единицу, делённую на период. Мы только что выяснили, что отношение единицы к периоду - это то же самое, что частота. Так что скорость равна произведению длины волны и частоты. Таким образом, вы решите все основные задачи, с которыми можно столкнуться в теме волн. Например, если нам дано, что скорость, равна 100 метров в секунду и направлена вправо… Сделаем такое предположение. Скорость - это вектор, и нужно указывать её направление. Пусть частота будет равна, скажем, 20 циклов в секунду, это то же самое, что 20 Гц. Итак, еще раз, частота будет равна 20 циклов в секунду или 20 Гц. Представьте, что вы смотрите в маленькое окно и видите только эту часть волны, только эту часть моей верёвки. Если вы знаете про 20 Гц, то вы знаете, что за 1 секунду вы увидите 20 спусков и подъёмов. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13... За 1 секунду вы увидите, что волна поднимется и опустится 20 раз. Вот что значит частота в 20 Гц, или 20 циклов в секунду. Итак, нам дана скорость, дана частота. Какова будет длина волны? В этом случае, она будет равна… Вернёмся к скорости: скорость равна произведению длины волны и частоты, правда? Разделим обе части на 20. Кстати, давайте проверим единицы измерения: это метры в секунду. Получится: λ умножить на 20 циклов в секунду. λ умножить на 20 циклов в секунду. Если мы разделим обе части на 20 циклов в секунду, то получим 100 метров в секунду умножить на 1/20 секунды за цикл. Тут остается 5. Тут 1. Получаем 5, секунды сокращаются. И мы получаем 5 метров в цикл. 5 метров за цикл в данном случае и будет длиной волны. 5 метров в цикл. Замечательно. Можно было бы сказать, что это 5 метров за цикл, но длина волны предполагает, что имеется в виду расстояние, пройденное за цикл. В этом случае, если волна распространяется вправо со скоростью 100 метров в секунду, и это частота (мы видим, что волна колеблется вверх-вниз 20 раз в секунду), то это расстояние, должно равняться 5 метрам. Точно так же можно вычислить период. Период равен отношению единицы к частоте. Он равен 1/20 секунды за цикл. 1/20 секунды за цикл. Я не хочу, чтобы вы запоминали формулы, я хочу, чтобы вы поняли их логику. Надеюсь, это видео вам помогло. Используя формулы, вы можете ответить почти на любой вопрос, если есть 2 переменные и нужно вычислить третью. Надеюсь, это окажется полезным для вас. Subtitles by the Amara.org community

Длина волны - пространственный период волнового процесса

Длина волны в среде

В оптически более плотной среде (слой выделен темным цветом) длина электромагнитной волны сокращается. Синяя линия - распределение мгновенного (t = const) значения напряженности поля волны вдоль направления распространения. Изменение амплитуды напряженности поля, обусловленное отражением от границ раздела и интерференцией падающей и отраженных волн, на рисунке условно не показано.

Под скоростью волны понимают ско-рость распространения возмущения. Например, удар по торцу стального стержня вызывает в нем местное сжатие, которое затем распространяется вдоль стержня со скоростью около 5 км/с .

Скорость волны определяется свойствами среды, в которой эта волна распространяется. При переходе волны из одной среды в другую ее скорость изменяется.

Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.

Поскольку скорость волны — величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней:

где v — скорость волны, Т — период колебаний в волне, λ (греческая буква лямбда) — длина волны.

Формула выражает связь длины волны с ее скоростью и периодом. Учитывая, что пери-од колебаний в волне обратно пропорционален частоте v , т. е. Т = 1/ v , можно получить формулу, выражающую связь длины волны с ее скоростью и частотой:

,

откуда

Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней.

Длина волны — это пространственный период волны. На графике волны (рис. выше) длина волны определяется как расстояние между двумя ближайшими точками гармонической бегущей волны , находящимися в одинаковой фазе колебаний. Это как бы мгновенные фотогра-фии волн в колеблющейся упругой среде в моменты времени t и t + Δt . Ось х совпадает с направле-нием распространения волны, на оси ординат отложены смещения s колеблющихся частиц среды.

Частота колебаний в волне совпадает с частотой колебаний источника, т. к. колебания час-тиц в среде являются вынужденными и не зависят от свойств среды, в которой распространяется волна. При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны.

В ходе урока вы сможете самостоятельно изучить тему «Длина волны. Скорость распространения волны». На этом уроке вы сможете познакомиться с особенными характеристиками волн. В первую очередь вы узнаете, что такое длина волны. Мы рассмотрим ее определение, способ ее обозначения и измерения. Затем мы также подробно рассмотрим скорость распространения волны.

Для начала вспомним, что механическая волна – это колебание, которое распространяется с течением времени в упругой среде. Раз это колебание, волне будут присущи все характеристики, которые соответствуют колебанию: амплитуда, период колебания и частота.

Кроме этого, у волны появляются свои особые характеристики. Одной из таких характеристик является длина волны . Обозначается длина волны греческой буквой (лямбда, или говорят «ламбда») и измеряется в метрах. Перечислим характеристики волны:

Что такое длина волны?

Длина волны - это наименьшее расстояние между частицами, совершающими колебание с одинаковой фазой.

Рис. 1. Длина волны, амплитуда волны

Говорить о длине волны в продольной волне сложнее, потому что там пронаблюдать частицы, которые совершают одинаковые колебания, гораздо труднее. Но и там есть характеристика - длина волны , которая определяет расстояние между двумя частицами, совершающими одинаковое колебание, колебание с одинаковой фазой.

Также длиной волны можно назвать расстояние, пройденное волной, за один период колебания частицы (рис. 2).

Рис. 2. Длина волны

Следующая характеристика - это скорость распространения волны (или просто скорость волны). Скорость волны обозначается так же, как и любая другая скорость, буквой и измеряется в . Как наглядно объяснить, что такое скорость волны? Проще всего это сделать на примере поперечной волны.

Поперечная волна - это волна, в которой возмущения ориентированы перпендикулярно направлению ее распространения (рис. 3).

Рис. 3. Поперечная волна

Представьте себе летящую над гребнем волны чайку. Ее скорость полета над гребнем и будет скоростью самой волны (рис.4).

Рис. 4. К определению скорости волны

Скорость волны зависит от того, какова плотность среды, каковы силы взаимодействия между частицами этой среды. Запишем связь между скоростью волны, длиной волны и периодом волны: .

Скорость можно определить, как отношение длины волны, расстояние, пройденное волной за один период, к периоду колебания частиц среды, в которой распространяется волна. Кроме этого, вспомним, что период связан с частотой следующим соотношением:

Тогда получим соотношение, которое связывает скорость, длину волны и частоту колебаний: .

Мы знаем, что волна возникает в результате действия внешних сил. Важно заметить, что при переходе волны из одной среды в другую изменяются ее характеристики: скорость движения волн, длина волны. А вот частота колебания остается прежней.

Список литературы

  1. Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. - 2-е издание передел. - X.: Веста: издательство «Ранок», 2005. - 464 с.
  2. Перышкин А.В., Гутник Е.М., Физика. 9 кл.: учебник для общеобразоват. учреждений / А.В. Перышкин, Е.М. Гутник. - 14-е изд., стереотип. - М.: Дрофа, 2009. - 300 с.
  1. Интернет-портал «eduspb» ()
  2. Интернет-портал «eduspb» ()
  3. Интернет-портал «class-fizika.narod.ru» ()

Домашнее задание

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

Исходная величина

Преобразованная величина

герц эксагерц петагерц терагерц гигагерц мегагерц килогерц гектогерц декагерц децигерц сантигерц миллигерц микрогерц наногерц пикогерц фемтогерц аттогерц циклов в секунду длина волны в эксаметрах длина волны в петаметрах длина волны в тераметрах длина волны в гигаметрах длина волны в мегаметрах длина волны в километрах длина волны в гектометрах длина волны в декаметрах длина волны в метрах длина волны в дециметрах длина волны в сантиметрах длина волны в миллиметрах длина волны в микрометрах Комптоновская длина волны электрона Комптоновская длина волны протона Комптоновская длина волны нейтрона оборотов в секунду оборотов в минуту оборотов в час оборотов в сутки

Удельная теплоёмкость

Подробнее о частоте и длине волны

Общие сведения

Частота

Частота - это величина, измеряющая как часто повторяется тот или иной периодический процесс. В физике с помощью частоты описывают свойства волновых процессов. Частота волны - количество полных циклов волнового процесса за единицу времени. Единица частоты в системе СИ - герц (Гц). Один герц равен одному колебанию в секунду.

Длина волны

Существует множество различных типов волн в природе, от вызванных ветром морских волн до электромагнитных волн. Свойства электромагнитных волн зависят от длины волны. Такие волны разделяют на несколько видов:

  • Гамма-лучи с длиной волны до 0,01 нанометра (нм).
  • Рентгеновские лучи с длиной волны - от 0,01 нм до 10 нм.
  • Волны ультрафиолетового диапазона , которые имеют длину от 10 до 380 нм. Человеческому глазу они не видимы.
  • Свет в видимой части спектра с длиной волны 380–700 нм.
  • Невидимое для людей инфракрасное излучение с длиной волны от 700 нм до 1 миллиметра.
  • За инфракрасными волнами следуют микроволновые , с длиной волны от 1 миллиметра до 1 метра.
  • Самые длинные - радиоволны . Их длина начинается с 1 метра.

Эта статья посвящена электромагнитному излучению, и особенно свету. В ней мы обсудим, как длина и частота волны влияют на свет, включая видимый спектр, ультрафиолетовое и инфракрасное излучение.

Электромагнитное излучение

Электромагнитное излучение - это энергия, свойства которой одновременно сходны со свойствами волн и частиц. Эта особенность называется корпускулярно-волновым дуализмом. Электромагнитные волны состоят из магнитной волны и перпендикулярной к ней электрической волны.

Энергия электромагнитного излучения - результат движения частиц, которые называются фотонами. Чем выше частота излучения, тем они более активны, и тем больше вреда они могут принести клеткам и тканям живых организмов. Это происходит потому, что чем выше частота излучения, тем больше они несут энергии. Большая энергия позволяет им изменить молекулярную структуру веществ, на которые они действуют. Именно поэтому ультрафиолетовое, рентгеновское и гамма излучение так вредно для животных и растений. Огромная часть этого излучения - в космосе. Оно присутствует и на Земле, несмотря на то, что озоновый слой атмосферы вокруг Земли блокирует большую его часть.

Электромагнитное излучение и атмосфера

Атмосфера земли пропускает только электромагнитное излучение с определенной частотой. Большая часть гамма-излучения, рентгеновских лучей, ультрафиолетового света, часть излучения в инфракрасном диапазоне и длинные радиоволны блокируются атмосферой Земли. Атмосфера поглощает их и не пропускает дальше. Часть электромагнитных волн, в частности, излучение в коротковолновом диапазоне, отражается от ионосферы. Все остальное излучение попадает на поверхность Земли. В верхних атмосферных слоях, то есть, дальше от поверхности Земли, больше радиации, чем в нижних слоях. Поэтому чем выше, тем опаснее для живых организмов находиться там без защитных костюмов.

Атмосфера пропускает на Землю небольшое количество ультрафиолетового света, и он приносит вред коже. Именно из-за ультрафиолетовых лучей люди обгорают на солнце и могут даже заболеть раком кожи. С другой стороны, некоторые лучи, пропускаемые атмосферой, приносят пользу. Например, инфракрасные лучи, которые попадают на поверхность Земли, используют в астрономии - инфракрасные телескопы следят за инфракрасными лучами, излучаемыми астрономическими объектами. Чем выше от поверхности Земли, тем больше инфракрасного излучения, поэтому телескопы часто устанавливают на вершинах гор и на других возвышенностях. Иногда их отправляют в космос, чтобы улучшить видимость инфракрасных лучей.

Взаимоотношение между частотой и длиной волны

Частота и длина волны обратно пропорциональны друг другу. Это значит, что по мере увеличения длины волны частота уменьшается и наоборот. Это легко представить: если частота колебаний волнового процесса высокая, то время между колебаниями намного короче, чем у волн, частота колебаний которых меньше. Если представить волну на графике, то расстояние между ее пиками будет тем меньше, чем больше колебаний она совершает на определенном отрезке времени.

Чтобы определить скорость распространения волны в среде, необходимо умножить частоту волны на ее длину. Электромагнитные волны в вакууме всегда распространяются с одинаковой скоростью. Эта скорость известна как скорость света. Она равна 299 792 458 метрам в секунду.

Свет

Видимый свет - электромагнитные волны с частотой и длиной, которые определяют его цвет.

Длина волны и цвет

Самая короткая длина волны видимого света - 380 нанометров. Это фиолетовый цвет, за ним следуют синий и голубой, затем зеленый, желтый, оранжевый и, наконец, красный. Белый свет состоит из всех цветов сразу, то есть, белые предметы отражают все цвета. Это можно увидеть с помощью призмы. Попадающий в нее свет преломляется и выстраивается в полосу цветов в той же последовательность, что в радуге. Эта последовательность - от цветов с самой короткой длиной волны, до самой длинной. Зависимость скорости распространения света в веществе от длины волны называется дисперсией.

Радуга образуется похожим способом. Капли воды, рассеянные в атмосфере после дождя, ведут себя так же как призма и преломляют каждую волну. Цвета радуги настолько важны, что во многих языках существуют мнемоника, то есть прием запоминания цветов радуги, настолько простой, что запомнить их могут даже дети. Многие дети, говорящие по-русски, знают, что «Каждый охотник желает знать, где сидит фазан». Некоторые люди придумывают свою мнемонику, и это - особенно полезное упражнение для детей, так как, придумав свой собственный метод запоминания цветов радуги, они быстрее их запомнят.

Свет, к которому человеческий глаз наиболее чувствителен - зеленый, с длиной волны в 555 нм в светлой среде и 505 нм в сумерках и темноте. Различать цвета могут далеко не все животные. У кошек, например, цветное зрение не развито. С другой стороны, некоторые животные видят цвета намного лучше, чем люди. Например, некоторые виды видят ультрафиолетовый и инфракрасный свет.

Отражение света

Цвет предмета определяется длиной волны света, отраженного с его поверхности. Белые предметы отражают все волны видимого спектра, в то время как черные - наоборот, поглощают все волны и ничего не отражают.

Один из естественных материалов с высоким коэффициентом дисперсии - алмаз. Правильно обработанные бриллианты отражают свет как от наружных, так и от внутренних граней, преломляя его, как и призма. При этом важно, чтобы большая часть этого света была отражена вверх, в сторону глаза, а не, например, вниз, внутрь оправы, где его не видно. Благодаря высокой дисперсии бриллианты очень красиво сияют на солнце и при искусственном освещении. Стекло, ограненное так же, как бриллиант, тоже сияет, но не настолько сильно. Это связано с тем, что, благодаря химическому составу, алмазы отражают свет намного лучше, чем стекло. Углы, используемые при огранке бриллиантов, имеет огромное значение, потому что слишком острые или слишком тупые углы либо не позволяют свету отражаться от внутренних стен, либо отражают свет в оправу, как показано на иллюстрации.

Спектроскопия

Для определения химического состава вещества иногда используют спектральный анализ или спектроскопию. Этот способ особенно хорош, если химический анализ вещества невозможно провести, работая с ним непосредственно, например, при определении химического состава звезд. Зная, какое электромагнитное излучение поглощает тело, можно определить, из чего оно состоит. Абсорбционная спектроскопия, являющаяся одним из разделов спектроскопии, определяет какое излучение поглощается телом. Такой анализ можно делать на расстоянии, поэтому его часто используют в астрономии, а также в работе с ядовитыми и опасными веществами.

Определение наличия электромагнитного излучения

Видимый свет, так же как и всё электромагнитное излучение - это энергия. Чем больше энергии излучается, тем легче эту радиацию измерить. Количество излученной энергии уменьшается по мере увеличения длины волны. Зрение возможно именно благодаря тому, что люди и животные распознают эту энергию и чувствуют разницу между излучением с разной длиной волны. Электромагнитное излучение разной длины ощущается глазом как разные цвета. По такому принципу работают не только глаза животных и людей, но и технологии, созданные людьми для обработки электромагнитного излучения.

Видимый свет

Люди и животные видят большой спектр электромагнитного излучения. Большинство людей и животных, например, реагируют на видимый свет , а некоторые животные - еще и на ультрафиолетовые и инфракрасные лучи. Способность различать цвета - не у всех животных - некоторые, видят только разницу между светлыми и темными поверхностями. Наш мозг определяет цвет так: фотоны электромагнитного излучения попадают в глаз на сетчатку и, проходя через нее, возбуждают колбочки, фоторецепторы глаза. В результате по нервной системе передается сигнал в мозг. Кроме колбочек, в глазах есть и другие фоторецепторы, палочки, но они не способны различать цвета. Их назначение - определять яркость и силу света.

В глазу обычно находится несколько видов колбочек. У людей - три типа, каждый из которых поглощает фотоны света в пределах определенных длин волны. При их поглощении происходит химическая реакция, в результате которой в мозг поступают нервные импульсы с информацией о длине волны. Эти сигналы обрабатывает зрительная зона коры головного мозга. Это - участок мозга, ответственный за восприятие звука. Каждый тип колбочек отвечает только за волны с определенной длиной, поэтому для получения полного представления о цвете, информацию, полученную от всех колбочек, складывают вместе.

У некоторых животных еще больше видов колбочек, чем у людей. Так, например, у некоторых видов рыб и птиц их от четырех до пяти типов. Интересно, что у самок некоторых животных больше типов колбочек, чем у самцов. У некоторых птиц, например у чаек, которые ловят добычу в воде или на ее поверхности, внутри колбочек есть желтые или красные капли масла, которые выступают в роли фильтра. Это помогает им видеть большее количество цветов. Подобным образом устроены глаза и у рептилий.

Инфракрасный свет

У змей, в отличие от людей, не только зрительные рецепторы, но и чувствительные органы, которые реагируют на инфракрасное излучение . Они поглощают энергию инфракрасный лучей, то есть реагируют на тепло. Некоторые устройства, например приборы ночного видения, также реагируют на тепло, выделяемое инфракрасным излучателем. Такие устройства используют военные, а также для обеспечения безопасности и охраны помещений и территории. Животные, которые видят инфракрасный свет, и устройства, которые могут его распознавать, видят не только предметы, которые находятся в их поле зрения на данный момент, но и следы предметов, животных, или людей, которые находились там до этого, если не прошло слишком много времени. Например, змеям видно, если грызуны копали в земле ямку, а полицейские, которые пользуются прибором ночного видения, видят, если в земле были недавно спрятаны следы преступления, например, деньги, наркотики, или что-то другое. Устройства для регистрации инфракрасного излучения используют в телескопах, а также для проверки контейнеров и камер на герметичность. С их помощью хорошо видно место утечки тепла. В медицине изображения в инфракрасном свете используют для диагностики. В истории искусства - чтобы определить, что изображено под верхним слоем краски. Устройства ночного видения используют для охраны помещений.

Ультрафиолетовый свет

Некоторые рыбы видят ультрафиолетовый свет . Их глаза содержат пигмент, чувствительный к ультрафиолетовым лучам. Кожа рыб содержит участки, отражающие ультрафиолетовый свет, невидимый для человека и других животных - что часто используется в животном мире для маркировки пола животных, а также в социальных целях. Некоторые птицы тоже видят ультрафиолетовый свет. Это умение особенно важно во время брачного периода, когда птицы ищут потенциальных партнеров. Поверхности некоторых растений также хорошо отражают ультрафиолетовый свет, и способность его видеть помогает в поиске пищи. Кроме рыб и птиц, ультрафиолетовый свет видят некоторые рептилии, например черепахи, ящерицы и зеленые игуаны (на иллюстрации).

Человеческий глаз, как и глаза животных, поглощает ультрафиолетовый свет, но не может его обработать. У людей он разрушает клетки глаза, особенно в роговице и хрусталике. Это, в свою очередь, вызывает различные заболевания и даже слепоту. Несмотря на то, что ультрафиолетовый свет вредит зрению, небольшое его количество необходимо людям и животным, чтобы вырабатывать витамин D. Ультрафиолетовое излучение, как и инфракрасное, используют во многих отраслях, например в медицине для дезинфекции, в астрономии для наблюдения за звездами и другими объектами и в химии для отверждения жидких веществ, а также для визуализации, то есть для создания диаграмм распространения веществ в определенном пространстве. С помощью ультрафиолетового света определяют поддельные банкноты и пропуска, если на них должны быть напечатаны знаки специальными чернилами, распознаваемыми с помощью ультрафиолетового света. В случае с подделкой документов ультрафиолетовая лампа не всегда помогает, так как преступники иногда используют настоящий документ и заменяют на нем фотографию или другую информацию, так что маркировка для ультрафиолетовых ламп остается. Существует также множество других применений для ультрафиолетового излучения.

Цветовая слепота

Из-за дефектов зрения некоторые люди не в состоянии различать цвета. Эта проблема называется цветовой слепотой или дальтонизмом, по имени человека, который первый описал эту особенность зрения. Иногда люди не видят только цвета с определенной длиной волны, а иногда они не различают цвета вообще. Часто причина - недостаточно развитые или поврежденные фоторецепторы, но в некоторых случаях проблема заключается в повреждениях на проводящем пути нервной системы, например в зрительной коре головного мозга, где обрабатывается информация о цвете. Во многих случаях это состояние создает людям и животным неудобства и проблемы, но иногда неумение различать цвета, наоборот - преимущество. Это подтверждается тем, что, несмотря на долгие годы эволюции, у многих животных цветное зрение не развито. Люди и животные, которые не различают цвета, могут, например, хорошо видеть камуфляж других животных.

Несмотря на преимущества цветовой слепоты, в обществе ее считают проблемой, и для людей с дальтонизмом закрыта дорога в некоторые профессии. Обычно они не могут получить полные права по управлению самолетом без ограничений. Во многих странах водительские права для этих людей тоже имеют ограничения, а в некоторых случаях они не могут получить права вообще. Поэтому они не всегда могут найти работу, на которой необходимо управлять автомобилем, самолетом, и другими транспортными средствами. Также им сложно найти работу, где умение определять и использовать цвета имеет большое значение. Например, им трудно стать дизайнерами, или работать в среде, где цвет используют, как сигнал (например, об опасности).

Проводятся работы по созданию более благоприятных условий для людей с цветовой слепотой. Например, существуют таблицы, в которых цвета соответствует знакам, и в некоторых странах эти знаки используют в учреждениях и общественных местах наряду с цветом. Некоторые дизайнеры не используют или ограничивают использование цвета для передачи важной информации в своих работах. Вместо цвета, или наряду с ним, они используют яркость, текст, и другие способы выделения информации, чтобы даже люди, не различающие цвета, могли полостью получить информацию, передаваемую дизайнером. В большинстве случаев люди с цветовой слепотой не различают красный и зеленый, поэтому дизайнеры иногда заменяют комбинацию «красный = опасность, зеленый = все нормально» на красный и синий цвета. Большинство операционных систем также позволяют настроить цвета так, чтобы людям с цветовой слепотой было все видно.

Цвет в машинном зрении

Машинное зрение в цвете - быстроразвивающаяся отрасль искусственного интеллекта. До недавнего времени большая часть работы в этой области проходила с монохромными изображениями, но сейчас все больше научных лабораторий работают с цветом. Некоторые алгоритмы для работы с монохромными изображениями применяют также и для обработки цветных изображений.

Применение

Машинное зрение используется в ряде отраслей, например для управления роботами, самоуправляемыми автомобилями, и беспилотными летательными аппаратами. Оно полезно в сфере обеспечения безопасности, например для опознания людей и предметов по фотографиям, для поиска по базам данных, для отслеживания движения предметов, в зависимости от их цвета и так далее. Определение местоположения движущихся объектов позволяет компьютеру определить направление взгляда человека или следить за движением машин, людей, рук, и других предметов.

Чтобы правильно опознать незнакомые предметы, важно знать об их форме и других свойствах, но информация о цвете не настолько важна. При работе со знакомыми предметами, цвет, наоборот, помогает быстрее их распознать. Работа с цветом также удобна потому, что информация о цвете может быть получена даже с изображений с низким разрешением. Для распознавания формы предмета, в отличие от цвета, требуется высокое разрешение. Работа с цветом вместо формы предмета позволяет уменьшить время обработки изображения, и использует меньше компьютерных ресурсов. Цвет помогает распознавать предметы одинаковой формы, а также может быть использован как сигнал или знак (например, красный цвет - сигнал опасности). При этом не нужно распознавать форму этого знака, или текст, на нем написанный. На веб-сайте YouTube можно увидеть множество интересных примеров использования цветного машинного зрения.

Обработка информации о цвете

Фотографии, которые обрабатывает компьютер, либо загружены пользователями, либо сняты встроенной камерой. Процесс цифровой фото- и видеосъемки освоен хорошо, но вот обработка этих изображений, особенно в цвете, связана с множеством трудностей, многие из которых еще не решены. Это связано с тем, что цветное зрение у людей и животных устроено очень сложно, и создать компьютерное зрение наподобие человеческого - непросто. Зрение, как и слух, основано на адаптации к окружающей среде. Восприятие звука зависит не только от частоты, звукового давления и продолжительности звука, но и от наличия или отсутствия в окружающей среде других звуков. Так и со зрением - восприятие цвета зависит не только от частоты и длины волны, но и от особенностей окружающей среды. Так, например, цвета окружающих предметов влияют на наше восприятие цвета.

С точки зрения эволюции такая адаптация необходима, чтобы помочь нам привыкнуть к окружающей среде и перестать обращать внимание на незначительные элементы, а направить все наше внимание на то, что меняется в окружающей обстановке. Это необходимо для того, чтобы легче замечать хищников и находить пищу. Иногда из-за этой адаптации происходят оптические иллюзии. Например, в зависимости от цвета окружающих предметов, мы воспринимаем цвет двух тел по-разному, даже когда они отражают свет с одинаковой длиной волны. На иллюстрации - пример такой оптической иллюзии. Коричневый квадрат в верхней части изображения (второй ряд, вторая колонка) выглядит светлее, чем коричневый квадрат в нижней части рисунка (пятый ряд, вторая колонка). На самом деле, их цвета одинаковы. Даже зная об этом, мы все равно воспринимаем их, как разные цвета. Поскольку наше восприятие цвета устроено так сложно, программистам трудно описать все эти нюансы в алгоритмах для машинного зрения. Несмотря на эти трудности, мы уже достигли многого в этой области.

Unit Converter articles were edited and illustrated by Анатолий Золотков

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Длина волны – это расстояние между двумя соседними точками, которые колеблются в одной фазе; как правило, понятие "длина волны" ассоциируется с электромагнитным спектром. Метод вычисления длины волны зависит от данной информации. Воспользуйтесь основной формулой, если известны скорость и частота волны. Если нужно вычислить длину световой волны по известной энергии фотона, воспользуйтесь соответствующей формулой.

Шаги

Часть 1

Вычисление длины волны по известным скорости и частоте

    Воспользуйтесь формулой для вычисления длины волны. Чтобы найти длину волны, разделите скорость волны на частоту. Формула: λ = v f {\displaystyle \lambda ={\frac {v}{f}}}

    Используйте соответствующие единицы измерения. Скорость измеряется в единицах метрической системы, например, в километрах в час (км/ч), метрах в секунду (м/с) и так далее (в некоторых странах скорость измеряется в британской системе, например, в милях в час). Длина волны измеряется в нанометрах, метрах, миллиметрах и так далее. Частота, как правило, измеряется в герцах (Гц).

    • Единицы измерения конечного результата должны соответствовать единицам измерения исходных данных.
    • Если частота дана килогерцах (кГц), или скорость волны в километрах в секунду (км/с), преобразуйте данные значения в герцы (10 кГц = 10000 Гц) и в метры в секунду (м/с).
  1. Известные значения подставьте в формулу и найдите длину волны. В приведенную формулу подставьте значения скорости и частоты волны. Разделив скорость на частоту, вы получите длину волны.

    Воспользуйтесь приведенной формулой, чтобы вычислить скорость или частоту. Формулу можно переписать в другом виде и вычислить скорость или частоту, если дана длина волны. Чтобы найти скорость по известным частоте и длине волны, используйте формулу: v = λ f {\displaystyle v={\frac {\lambda }{f}}} . Чтобы найти частоту по известным скорости и длине волны, используйте формулу: f = v λ {\displaystyle f={\frac {v}{\lambda }}} .

    Часть 2

    Вычисление длины волны по известной энергии фотона
    1. Вычислите длину волны по формуле для вычисления энергии фотона. Формула для вычисления энергии фотона: E = h c λ {\displaystyle E={\frac {hc}{\lambda }}} , где E {\displaystyle E} – энергия фотона, измеряемая в джоулях (Дж), h {\displaystyle h} – постоянная Планка, равная 6,626 x 10 -34 Дж∙с, c {\displaystyle c} – скорость света в вакууме, равная 3 x 10 8 м/с, λ {\displaystyle \lambda } – длина волны, измеряемая в метрах.

      • В задаче энергия фотона будет дана.
    2. Перепишите представленную формулу, чтобы найти длину волны. Для этого проделайте ряд математических операций. Обе стороны формулы умножьте на длину волны, а затем обе стороны разделите на энергию; вы получите формулу: λ = h c E {\displaystyle \lambda ={\frac {hc}{E}}} . Если энергия фотона известна, можно вычислить длину световой волны.

 

Возможно, будет полезно почитать: