Биометрическая идентификация. Современные биометрические методы идентификации

К. Грибачев

программист ЗАО НВП «Болид»

ВВЕДЕНИЕ

Понятие «биометрия» охватывает комплекс различных методов и технологий, позволяющих идентифицировать человека по его биологическим параметрам. Биометрия основана на том, что каждый человек обладает индивидуальным набором физиологических, психосоматических, личностных и прочих характеристик. Например, к физиологическим параметрам можно отнести папиллярные узоры пальцев, рисунок радужной оболочки глаза и т.д.

С развитием вычислительной техники появились устройства, способные надежно обрабатывать биометрические данные практически в реальном времени, используя при этом специальные алгоритмы. Это послужило толчком в развитии биометрических технологий. В последнее время сферы их применения постоянно расширяются. На рисунке 1 представлены некоторые области применения биометрии.

Рис. 1. Области применения биометрии

БИОМЕТРИЧЕСКИЕ ПАРАМЕТРЫ

Биометрическая идентификация (БИ) может использовать различные параметры, которые условно можно разделить на 2 типа: статические и динамические (рис. 2).

Статические параметры определяют «материальные» характеристики человека как физического объекта, обладающего определенной формой, весом, объемом и т.д. Эти параметры вообще не меняются или мало меняются в зависимости от возраста человека (это правило может нарушаться только в детском возрасте). Однако не все статические параметры могут использоваться, когда идентификация человека должна проводиться быстро (например, в системах контроля доступа). Очевидно, что анализ ДНК требует довольно существенных временных затрат и вряд ли в ближайшее время будет широко задействован в системах контроля доступа.

Динамические параметры в большей степени описывают поведенческие или психосоматические характеристики человека. Эти параметры могут довольно сильно меняться как в зависимости от возраста, так и при изменяющихся внешних и внутренних факторах (нарушениях здоровья и т.д.). Однако существуют области применения, в которых использование динамических параметров очень актуально, например, при проведении графологических экспертиз или для идентификации человека по голосу.

ПРЕИМУЩЕСТВА ОГРАНИЧЕНИЯ И СПЕЦИФИКА БИОМЕТРИЧЕСКОЙ ИНФОРМАЦИИ

В настоящее время в подавляющем большинстве биометрических систем контроля доступа (БиоСКУД) используются статические параметры. Из них наиболее распространенным параметром являются отпечатки пальцев.

Основными преимуществами использования биометрической информации в СКУД (по сравнению с ключами доступа или прок-симити-картами) являются:

■ трудности подделки идентификационного параметра;

■ невозможность утери идентификатора;

■ невозможность передачи идентификатора другому человеку.

Наряду с описанными преимуществами существуют определенные ограничения в применении биометрических систем, связанные с «неточностью» или «размытостью» биометрических параметров. Это вызвано тем, что, например, при повторном считывании одного и того же отпечатка пальца или при повторной съемке одного и того же лица сканер никогда не получает два абсолютно одинаковых изображения, то есть всегда имеют место различные факторы, в той или иной степени влияющие на результат сканирования. Например, положение пальца в сканере никогда жестко не зафиксировано, выражение лица человека также может изменяться и т.д.

Такая принципиальная «неповторяемость» съема биометрической информации является специфической особенностью биометрических систем, и, как следствие, это приводит к существенно повышенным требованиям, предъявляемым к «интеллектуальности» и надежности вычислительных алгоритмов, а также к быстродействию микропроцессорных элементов СКУД. В самом деле, если при использовании проксимити-карты достаточно сверить два цифровых кода на идентичность, то при сравнении измеренного биометрического параметра с эталонным значением необходимо применять специальные, довольно сложные алгоритмы корреляционного анализа и/или нечеткой («fuzzy») логики.

Для облегчения решения проблемы «нечеткого» распознавания вместо отсканированных образов используются специальные цифровые модели или шаблоны. Такой шаблон представляет собой некоторый цифровой массив определенной структуры, который содержит информацию о считанном образе биометрического параметра, но при этом в шаблоне сохраняются не все данные, как при обычном сканировании, а только наиболее характерная, важная для последующей идентификации информация. Например, в случае использования сканирования лица в шаблон могут входить параметры, описывающие форму носа, глаз, рта и т.д. Конкретный метод преобразования биометрического образа в формат цифрового шаблона не является строго формализуемым, и, как правило, каждая фирма-производитель биометрического оборудования использует свои собственные форматы шаблонов, а также собственные алгоритмы их формирования и сравнения.

Следует отдельно отметить и тот факт, что по биометрическому шаблону принципиально невозможно восстановить исходный биометрический образ. Это очевидно, так как шаблон, по сути, является всего лишь моделью, описывающей реальный биометрический образ. Отсюда возникает существенное различие между биометрией в СКУД и, например, биометрией в криминалистике, где используются не модели-шаблоны, а «полные» образы отпечатков пальцев. Это различие важно иметь в виду, так как, например, в приложении к современному законодательству это может означать, что биометрические шаблоны нельзя автоматически относить к персональным данным человека.

Рис. 2. Типы и виды биометрических параметров


ПАРАМЕТРЫ ОЦЕНКИ ЭФФЕКТИВНОСТИ БИОМЕТРИЧЕСКИХ СКУД

В силу описанной выше специфики биометрической информации в любой БиоСКУД всегда есть вероятность возникновения ошибок двух основных видов:

■ ложный отказ в доступе (коэффициент FRR - False Rejection Rate), когда СКУД не распознает (не пропускает) человека, который зарегистрирован в системе;

■ ложная идентификация (коэффициент FAR - False Acceptance Rate), когда СКУД «путает» людей, пропуская «чужого» человека, который не зарегистрирован в системе, распознавая его как «своего». Данные коэффициенты являются важнейшими параметрами оценки надежности

БиоСКУД.

На практике ситуация осложняется тем, что указанные два типа ошибок являются взаимозависимыми. Так, расширение диапазона возможных параметров контроля распознавания таким образом, чтобы система всегда «распознавала своего» сотрудника (то есть снижая коэффициент FRR), автоматически приводит к тому, что в этот новый расширенный диапазон «просочится чужой» сотрудник (то есть увеличится коэффициент FAR). И наоборот, при улучшении коэффициента FAR (то есть при уменьшении его значения) автоматически ухудшится (увеличится) коэффициент FRR. Другими словами, чем более «тщательно» система пытается произвести распознавание, чтобы не пропустить «чужого» сотрудника, тем с большей вероятностью она «не узнает и своего» (то есть зарегистрированного) сотрудника. Поэтому на практике всегда имеет место некий компромисс между коэффициентами FAR и FRR.

Кроме указанных коэффициентов ошибок, немаловажным параметром оценки эффективности БиоСКУД является скорость идентификации. Это важно, например, на проходных предприятий, когда в короткий промежуток времени через систему проходит большое количество сотрудников. Время срабатывания зависит от многих факторов: алгоритма идентификации, сложности шаблона, количества биометрических шаблонов сотрудников в эталонной базе БиоСКУД и т.д. Очевидно, что время срабатывания также коррелирует и с надежностью идентификации - чем более «тщателен» алгоритм идентификации, тем больше система тратит времени на эту процедуру.

МЕТОДЫ ЗАЩИТЫ ОТ ИМИТАЦИИ И ОШИБОК ПОЛЬЗОВАТЕЛЕЙ

Очевидно, что при всех своих преимуществах использование биометрической информации автоматически не гарантирует абсолютную надежность системы контроля доступа. Кроме описанных выше ошибок идентификации, существует и определенная вероятность задействования злоумышленниками биометрических имитаторов для «обмана» БиоСКУД. В качестве средств имитации могут выступать, например, муляжи пальцев с нанесенным русунком отпечатка, цветные фотографии лица и т.п.

Современные БиоСКУД имеют средства защиты от подобных биоимитаторов. Кратко перечислим некоторые из них:

■ измерение температуры (пальца, ладони);

■ измерение электрических потенциалов (пальца);

■ измерение наличия кровотока (ладони и пальцы);

■ сканирование внутренних параметров (рисунок вен рук);

■ использование трехмерных моделей (лица).

Кроме защиты от имитаторов, БиоСКУД должна обладать и средствами защиты от ошибок самих пользователей. Например, при сканировании отпечатка пальца сотрудник может нечаянно или нарочно расположить палец под углом, дети могут поместить одновременно два пальца в сканер и т.п. С целью устранения таких явлений применяются, например, следующие методы:

■ специальные алгоритмы фильтрации «аномальных» параметров;

■ многократное сканирование (например, троекратное сканирование отпечатка пальца при регистрации);

■ возможность повторных попыток идентификации.

ЗАКЛЮЧЕНИЕ

Использование биометрических данных в СКУД - это перспективная и быстро развивающаяся технология. Внедрение биометрии требует повышения уровня «интеллекта» СКУД, разработки новых наукоемких алгоритмических и программных методов, усовершенствования аппаратных средств. Таким образом, можно сделать вывод, что внедрение биометрических технологий способствует развитию отрасли систем контроля и управления доступом в целом.

Проблема идентификации личности при допуске к закрытой информации или объекту всегда была ключевой. Магнитные карты, электронные пропуска, кодированные радиосообщения можно подделать, ключи можно потерять, при особом желании даже внешность можно изменить. Но целый ряд биометрических параметров является абсолютно уникальным для человека.

Где применяется биометрическая защита


Современные биометрические системы дают высокую надежность аутентификации объекта. Обеспечивают контроль доступа в следующих сферах:

  • Передача и получение конфиденциальной информации личного или коммерческого характера;
  • Регистрация и вход на электронное рабочее место;
  • Осуществление удаленных банковских операций;
  • Защита баз данных и любой конфиденциальной информации на электронных носителях;
  • Пропускные системы в помещения с ограниченным доступом.

Уровень угрозы безопасности со стороны террористов и криминальных элементов привел к широкому использованию биометрических систем защиты и управления контролем доступа не только в государственных организациях или больших корпорациях, но и у частных лиц. В быту наиболее широко такое оборудование применяется в системах доступа и технологиях управления типа «умный дом».

К биометрической системе защиты относятся

Биометрические характеристики являются очень удобным способом аутентификации человека, так как обладают высокой степенью защиты (сложно подделать) и их невозможно украсть, забыть или потерять. Все современные метолы биометрической аутентификации можно разделить на две категории:


  1. Статистические , к ним относят уникальные физиологические характеристики, которые неизменно присутствуют с человеком всю его жизнь. Наиболее распространенный параметр – дактилоскопический отпечаток;
  2. Динамические – основаны на приобретенных поведенческих особенностях. Как правило, выражаются в подсознательных повторяемых движениях при воспроизведении какого либо процесса. Наиболее распространенные – графологические параметры (индивидуальность почерка).

Статистические методы


ВАЖНО! На основании установлено, что в отличии от радужной оболочки глаза сетчатка на протяжении жизни человека может существенно изменяться.

Сканер сетчатки глаза, производство компании LG


Динамические методы


  • Довольно простой метод, для которого не требуется специализированная аппаратура. Часто используется в системах умный дом в качестве командного интерфейса. Для построения голосовых шаблонов используются частотные или статистические параметры голоса: интонация, высота звука, голосовая модуляция и т. д. Для повышения уровня безопасности применяется комбинирование параметров.

Система имеет ряд существенных недостатков, которые делают ее широкое применение нецелесообразным. К основным недостаткам относится:

  • Возможность записи голосового пароля при помощи направленного микрофона злоумышленниками;
  • Низкая вариативность идентификации. У каждого человека голос изменяется не только с возрастом, но и по состоянию здоровья, под воздействием настроения и т.п.

В системах умный дом голосовую идентификацию целесообразно использовать для контроля доступа в помещения со средним уровнем секретности или управления различными приборами: , освещение, система отопления, управление шторами и жалюзями и т.п.

  • Графологическая аутентификация. Основана на анализе рукописного почерка. Ключевым параметром является рефлекторное движение кисти руки при подписании документа. Для снятия информации используются специальные стилусы имеющие чувствительные сенсоры регистрирующие давление на поверхность. В зависимости от требуемого уровня защиты могут сравниваться следующие параметры:
  • Шаблон подписи — сама картинка сверяется с той, что находится в памяти устройства;
  • Динамические параметры – сравнивается скорость подписи с имеющейся статистической информацией.

ВАЖНО! Как правило, в современных системах безопасности и СКУР для идентификации используются сразу несколько методов. К примеру, дактилоскопия с одновременным измерением параметров руки. Такой метод существенно повышает надежность системы и предотвращает возможность подделки.

Видео — Как обезопасить биометрические системы идентификации?

Производители систем защиты информации

На данный момент на рынке биометрических систем, которые может себе позволить рядовой пользователь лидируют несколько компаний.


ZK7500 биометрический USB считыватель отпечатков пальцев используется для контроля доступа в ПК

Использование биометрических систем в бизнесе и не только существенно поднимет уровень безопасности, но и способствует укреплению трудовой дисциплины на предприятии или в офисе. В быту биометрические сканеры применяются гораздо реже из-за их высокой стоимости, но с увеличением предложения большинство этих устройств вскоре станет доступно рядовому пользователю.

Эта статья в какой-то мере является продолжением , а в какой-то её приквэлом. Здесь я расскажу про основы построения любой биометрической системы и про то, что осталось за кадром прошлой статьи, но обсуждалось в комментариях. Акцент сделан не на сами биометрические системы, а на их принципах и области действия.
Тем, кто не читал статью, или уже забыл - советую просмотреть что такое FAR и FRR, так как эти понятия будут использоваться и здесь.

Общие понятия

Любая аутентификация человека строиться на трёх традиционных принципах:

1) По собственности . К собственности может относиться пропуск, пластиковая карта, ключ или общегражданские документы.
2) По знаниям . К знаниям относятся пароли, коды или информация (например девичья фамилия матери).
3) По биометрическим характеристикам . Подробнее о том, какие бывают биометрические характеристики я говорил в предыдущей статье.

Эти три принципа как могут использоваться по отдельности, так и использоваться в группах. Эта методология и порождает два основных направления биометрии.

Верификация

Верификацией называется подтверждение личности человека через биометрический признак, где первичная аутентификация прошла по одному из первых двух методов, указанных выше. Простейшим верификатором можно назвать пограничника, производящего верификацию вашего лица с вашим паспортом. Верификации подразумевает значительно большую надёжность системы. Вероятность того, что система пропустит нарушителя, не применяющего средства преодоления равна FAR используемого биометрического метода. Даже для самых слабых биометрических систем эта вероятность ничтожно мала. Основными минусами верификации являются два пункта. Первый - человеку требуется носить с собой документ или помнить пароль системы. Всегда существует проблема потери или забывания информации. Так же верификация принципиально невозможна для скрытной аутентификации.

Работу системы доступа, основанной на биометрической верификации можно представить следующим способом:

Идентификация

Биометрической идентификацией называется такое использование биометрического признака, при котором не требуется дополнительной информации. Поиск объекта осуществляется по всей базе данных и не требует предварительного ключа. Понятно, что основным минусом этого является то, что чем больше человек в базе, тем больше вероятность ложного доступа произвольного человека. В прошлой статье проводились оценки вероятности такого доступа при проектировании систем. Например системы по пальцам дают возможность содержать базу не более 300 человек, по глазам не более 3000. Плюс идентификации - все ключи всегда будут с вами, не нужно ни паролей, ни карточек.

Скрытная идентификация

В отличие от верификации идентификация может быть скрытной для человека. Как она возможна и стоит ли её бояться? Попробую вкратце рассказать те мысли, которые бытуют среди людей занимающихся биометрией. В прошлой статье эта мысль осталась незаконченной.

Рассмотрим технологии, которые могут позволить хотя бы в некоторых случаях скрытно от человека определить его личность. Во-первых, сразу стоит отбросить все контактные методы. Размещать сканеры отпечатков пальцев в ручках дверей не лучшая затея. Их заметно, многие не касаются ручек, контактные сканеры пачкаются, и.т.д. Во-вторых, можно сразу отбрасывать методы, где максимальная дальность ограниченна 10-15 сантиметрами (например вены рук). В-третьих, можно отбросить всю динамическую биометрию, так как там слишком низкие показатели FAR и FRR.

Остаётся всего две технологии. Это технологии, где в качестве сканеров данных выступают камеры: распознавание по лицам (2D, 3D) и распознавание по радужной оболочке.
Первую из них, распознавание по 2D лицам, уже неоднократно пытались внедрить(из-за её простоты), но всё время безуспешно. Это обусловлено низкими статистическими параметрами системы. Если в базе разыскиваемых личностей находится всего 100 человек, то каждый 10 прохожий будет объявляться разыскиваем. Даже у милиционера в метро КПД значительно выше.
Две следующих технологии очень похожи. Для обеих возможно использование на отдалении от человека, но обе должны иметь достаточное количество оборудования. Как 3D сканер лица, так и сканер радужной оболочки можно ставить в местах, где есть узкие проходы. Это эскалаторы, двери, лестницы. Примером такой системы может служить система, созданная SRI International (сейчас у них мёртвый сайт, но есть практически аналог от AOptix). Я не на 100% уверен, что система от SRI International рабочая, слишком много ошибок в видео, но принципиальная возможность создания существует. Вторая система работает, хотя там и слишком мала скорость для скрытной системы. Сканеры 3D лица работают примерно по тому же принципу: детектирование в узком проходе. В случае 3D лица и распознавании по глазам надёжность работы достаточно высокая. Если база 100 преступников, то проверять придётся лишь каждого 10000 из мирных граждан, что уже достаточно эффективно.

Ключевой особенностью любой скрытой биометрии является то, что человек не должен о ней знать. Вставить в глаза линзы, или изменить форму лица несколькими накладками можно незаметно для окружающих, но заметно для биометрической системы. Почему-то у меня есть подозрение, что в скором будущем спрос на линзы, изменяющие радужку значительно возрастёт. Возрос же в Британии спрос на банданы. А события там только первые ласточки биометрии.

Модель биометрической системы доступа и её частей

Любая биометрическая система будет состоять из нескольких элементов. В некоторых из систем отдельные элементы сращены, в некоторых разнесены в различные элементы.


В случае, если биометрическая система используется только на одной проходной, то особо без разницы, разделена ли система на части или нет. На месте можно добавлять человека в базу и проверять его. Если же существует несколько проходных, то нерационально хранить на каждой проходной отдельную базу данных. Более того, такая система не динамична: добавление или удаление пользователей требует обхода всех сканеров.

Биометрический сканер


Биометрический сканер это часть любой биометрической системы, без которой она не может существовать. В некоторых системах биометрический сканер это просто видеокамера, а в некоторых (например сканеры сетчатки), это сложный оптический комплекс. Двумя основными характеристиками биометрического сканера являются его принцип деятельности (контактный, бесконтактный) и его скорость (количество человек в минуту, которое он может обслужить). Для тех биометрических характеристик, чьё использование уже вошло в норму, сканер можно купить отдельно от логической системы. В случае, если сканер физически разделён с алгоритмом сравнения и с базой, то сканер может выполнять первичную обработку полученной биометрической характеристики (например для глаза это выделение радужки). Это действие выполняется для того, чтобы не перегружать канал общения сканера и основной базы. Так же, в сканере, отделённом от базы, обычно встроена система шифрования данных, чтобы обезопасить передачу биометрических данных.

Алгоритм сравнения + база данных

Эти две части биометрической системы обычно живут по соседству и часто дополняют друг друга. Для некоторых биометрических признаков алгоритм сравнения может при выполнять оптимизированных поиск по базе (сравнение по пальцам, сравнение по лицу). А в некоторых (глаза), для полного сравнения ему в любом случае нужно обойти всю базу.

Алгоритм сравнения имеет много характеристик. Его две основных характеристики, FAR и FRR во многом определяют биометрическую систему. Так же стоит отметить:

1) Скорость работы. Для некоторых сравнений (глаза), скорость работы может достигать сотен тысяч сравнений в секунду на обычном компьютере. Этой скорости хватает для того, чтобы обеспечить любые нужды пользователей, не замечая временной задержки. А для некоторых систем (3D лицо) это уже достаточно значащая характеристика системы, требующая большой вычислительной мощности для сохранения скорости работы при увеличении базы.
2) Удобство работы. По сути, удобство любой системы во многом устанавливается отношением FAR, FRR. В системе мы можем немножко изменять их значение, так, чтобы сделать акцент в сторону скорости или сторону надёжности. Грубо говоря, получается примерно такой график:


В случае если мы хотим высокого уровня надёжности, мы выбираем положение в левой его части. А если пользователей мало, то неплохие показатели будут и в правой части графика, где будет высокие характеристики удобства, а значит и высокая скорость работы.

«Сделать что-нибудь»

После сравнения биометрическая система должна выдать результаты сравнения на управляющие органы. Дальше это может быть как команда «открыть дверь», так и информация «такой-то такой-то пришёл на работу». А вот что дальше делать с этой информацией должны решать установщики системы. Но и тут не всё так просто, надо учитывать возможности атаки:

Атака на биометрическую систему

Несмотря на то, что многие биометрические системы снабжены алгоритмами, способными определить атаку на них, этого не достаточно чтобы относиться к безопасности беспечно. Самой простой атакой на идентификационную систему является многократное сканирование. Предположим ситуацию: в фирме служит порядка сотни человек. Злоумышленник подходит к биометрической системе пропуска и многократно сканируется на ней. Даже для надёжных систем через пару тысяч сканирований возможно ложное определение и пропуск злоумышленника на объект. Чтобы избежать этого многие системы отслеживают неудачные сканирования и после 10-15 попыток блокируют вход. Но в случаях, когда система этого не может делать - эта задача ложится на пользователя. К сожалению, об этом часто забывают.
Второй способ атаки на биометрическую систему - подделка объекта сканирования. В случае, если система имеет алгоритмы защиты от подделки, важно правильно на них среагировать. Обычно эти алгоритмы тоже вероятностные и имеют свой FAR и FRR. Так что не нужно забывать вовремя отслеживать сигналы об атаке и высылать охранника.
Кроме атаки на саму систему возможно атаковать окружение системы. Когда-то мы натолкнулись на забавную ситуацию в этой стране. Многие интеграторы не особо запариваются над передачей данных. Для передачи они используют стандартный протокол

Презентацию к данной лекции можно скачать .

Простая идентификация личности. Комбинация параметров лица, голоса и жестов для более точной идентификации. Интеграция возможностей модулей Intel Perceptual Computing SDK для реализации многоуровневой системы информационной безопасности, основанной на биометрической информации.

В данной лекции дается введение в предмет биометрических систем защиты информации, рассматривается принцип действия, методы и применение на практике. Обзор готовых решений и их сравнение. Рассматриваются основные алгоритмы идентификации личности. Возможности SDK по созданию биометрических методов защиты информации.

4.1. Описание предметной области

Существует большое разнообразие методов идентификации и многие из них получили широкое коммерческое применение. На сегодняшний день в основе наиболее распространенных технологий верификации и идентификации лежит использование паролей и персональных идентификаторов ( personal identification number - PIN ) или документов типа паспорта, водительских прав. Однако такие системы слишком уязвимы и могут легко пострадать от подделки, воровства и других факторов. Поэтому все больший интерес вызывают методы биометрической идентификации, позволяющие определить личность человека по его физиологическим характеристикам путем распознания по заранее сохраненным образцам.

Диапазон проблем, решение которых может быть найдено с использованием новых технологий, чрезвычайно широк:

  • предотвратить проникновение злоумышленников на охраняемые территории и в помещения за счет подделки, кражи документов, карт, паролей;
  • ограничить доступ к информации и обеспечить персональную ответственность за ее сохранность;
  • обеспечить допуск к ответственным объектам только сертифицированных специалистов;
  • процесс распознавания, благодаря интуитивности программного и аппаратного интерфейса, понятен и доступен людям любого возраста и не знает языковых барьеров;
  • избежать накладных расходов, связанных с эксплуатацией систем контроля доступа (карты, ключи);
  • исключить неудобства, связанные с утерей, порчей или элементарным забыванием ключей, карт, паролей;
  • организовать учет доступа и посещаемости сотрудников.

Кроме того, важным фактором надежности является то, что она абсолютно никак не зависит от пользователя. При использовании парольной защиты человек может использовать короткое ключевое слово или держать бумажку с подсказкой под клавиатурой компьютера. При использовании аппаратных ключей недобросовестный пользователь будет недостаточно строго следить за своим токеном, в результате чего устройство может попасть в руки злоумышленника. В биометрических же системах от человека не зависит ничего. Еще одним фактором, положительно влияющим на надежность биометрических систем, является простота идентификации для пользователя. Дело в том, что, например, сканирование отпечатка пальца требует от человека меньшего труда, чем ввод пароля. А поэтому проводить эту процедуру можно не только перед началом работы, но и во время ее выполнения, что, естественно, повышает надежность защиты. Особенно актуально в этом случае использование сканеров, совмещенных с компьютерными устройствами. Так, например, есть мыши, при использовании которых большой палец пользователя всегда лежит на сканере. Поэтому система может постоянно проводить идентификацию, причем человек не только не будет приостанавливать работу, но и вообще ничего не заметит. В современном мире, к сожалению, продается практически все, в том числе и доступ к конфиденциальной информации. Тем более что человек, передавший идентификационные данные злоумышленнику, практически ничем не рискует. Про пароль можно сказать, что его подобрали, а про смарт-карту, что ее вытащили из кармана. В случае же использования биометрической защиты подобной ситуации уже не произойдет.

Выбор отраслей, наиболее перспективных для внедрения биометрии, с точки зрения аналитиков, зависит, прежде всего, от сочетания двух параметров: безопасности (или защищенности) и целесообразности использования именно этого средства контроля или защиты. Главное место по соответствию этим параметрам, бесспорно, занимают финансовая и промышленная сфера, правительственные и военные учреждения, медицинская и авиационная отрасли, закрытые стратегические объекты. Данной группе потребителей биометрических систем безопасности в первую очередь важно не допустить неавторизованного пользователя из числа своих сотрудников к неразрешенной для него операции , а также важно постоянно подтверждать авторство каждой операции . Современная система безопасности уже не может обходиться не только без привычных средств, гарантирующих защищенность объекта, но и без биометрии. Также биометрические технологии используются для контроля доступа в компьютерных, сетевых системах, различных информационных хранилищах, банках данных и др.

Биометрические методы защиты информации становятся актуальней с каждым годом. С развитием техники: сканеров, фото и видеокамер спектр задач, решаемых с помощью биометрии, расширяется, а использование методов биометрии становится популярнее. Например, банки, кредитные и другие финансовые организации служат для их клиентов символом надежности и доверия. Чтобы оправдать эти ожидания, финансовые институты все больше внимание уделяют идентификации пользователей и персонала, активно применяя биометрические технологии. Некоторые варианты использования биометрических методов:

  • надежная идентификация пользователей различных финансовых сервисов, в т.ч. онлайновых и мобильных (преобладает идентификация по отпечаткам пальцев, активно развиваются технологии распознавания по рисунку вен на ладони и пальце и идентификация по голосу клиентов, обращающихся в колл-центры);
  • предотвращение мошенничеств и махинаций с кредитными и дебетовыми картами и другими платежными инструментами (замена PIN-кода распознаванием биометрических параметров, которые невозможно похитить, "подсмотреть", клонировать);
  • повышение качества обслуживания и его комфорта (биометрические банкоматы);
  • контроль физического доступа в здания и помещения банков, а также к депозитарным ячейкам, сейфам, хранилищам (с возможностью биометрической идентификации, как сотрудника банка, так и клиента-пользователя ячейки);
  • защита информационных систем и ресурсов банковских и других кредитных организаций.

4.2. Биометрические системы защиты информации

Биометрические системы защиты информации - системы контроля доступа, основанные на идентификации и аутентификации человека по биологическим признакам, таким как структура ДНК, рисунок радужной оболочки глаза, сетчатка глаза, геометрия и температурная карта лица, отпечаток пальца, геометрия ладони. Также эти методы аутентификации человека называют статистическими методами, так как основаны на физиологических характеристиках человека, присутствующих от рождения и до смерти, находящиеся при нем в течение всей его жизни, и которые не могут быть потеряны или украдены. Часто используются еще и уникальные динамические методы биометрической аутентификации - подпись, клавиатурный почерк, голос и походка, которые основаны на поведенческих характеристиках людей.

Понятие " биометрия " появилось в конце девятнадцатого века. Разработкой технологий для распознавания образов по различным биометрическим характеристикам начали заниматься уже достаточно давно, начало было положено в 60-е годы прошлого века. Значительных успехов в разработке теоретических основ этих технологий добились наши соотечественники. Однако практические результаты получены в основном на западе и совсем недавно. В конце двадцатого века интерес к биометрии значительно вырос благодаря тому, что мощность современных компьютеров и усовершенствованные алгоритмы позволили создать продукты, которые по своим характеристикам и соотношению стали доступны и интересны широкому кругу пользователей. Отрасль науки нашла свое применение в разработках новых технологий безопасности. Например, биометрическая система может контролировать доступ к информации и хранилищам в банках, ее можно использовать на предприятиях, занятых обработкой ценной информации, для защиты ЭВМ, средств связи и т. д.

Суть биометрических систем сводится к использованию компьютерных систем распознавания личности по уникальному генетическому коду человека. Биометрические системы безопасности позволяют автоматически распознавать человека по его физиологическим или поведенческим характеристикам.


Рис. 4.1.

Описание работы биометрических систем:

Все биометрические системы работают по одинаковой схеме. Вначале, происходит процесс записи, в результате которого система запоминает образец биометрической характеристики. Некоторые биометрические системы делают несколько образцов для более подробного запечатления биометрической характеристики. Полученная информация обрабатывается и преобразуется в математический код. Биометрические системы информационной безопасности используют биометрические методы идентификации и аутентификации пользователей. Идентификация по биометрической системы проходит в четыре стадии:

  • Регистрация идентификатора - сведение о физиологической или поведенческой характеристике преобразуется в форму, доступную компьютерным технологиям, и вносятся в память биометрической системы;
  • Выделение - из вновь предъявленного идентификатора выделяются уникальные признаки, анализируемые системой;
  • Сравнение - сопоставляются сведения о вновь предъявленном и ранее зарегистрированном идентификаторе;
  • Решение - выносится заключение о том, совпадают или не совпадают вновь предъявленный идентификатор.

Заключение о совпадении/несовпадении идентификаторов может затем транслироваться другим системам (контроля доступа, защиты информации и т. д), которые далее действуют на основе полученной информации.

Одна из самых важных характеристик систем защиты информации, основанных на биометрических технологиях, является высокая надежность , то есть способность системы достоверно различать биометрические характеристики, принадлежащие разным людям, и надежно находить совпадения. В биометрии эти параметры называются ошибкой первого рода ( False Reject Rate , FRR ) и ошибкой второго рода ( False Accept Rate , FAR ). Первое число характеризует вероятность отказа доступа человеку, имеющему доступ , второе - вероятность ложного совпадения биометрических характеристик двух людей. Подделать папиллярный узор пальца человека или радужную оболочку глаза очень сложно. Так что возникновение "ошибок второго рода" (то есть предоставление доступа человеку, не имеющему на это право) практически исключено. Однако, под воздействием некоторых факторов биологические особенности, по которым производится идентификация личности, могут изменяться. Например, человек может простудиться, в результате чего его голос поменяется до неузнаваемости. Поэтому частота появлений "ошибок первого рода" (отказ в доступе человеку, имеющему на это право) в биометрических системах достаточно велика. Система тем лучше, чем меньше значение FRR при одинаковых значениях FAR . Иногда используется и сравнительная характеристика EER ( Equal Error Rate ), определяющая точку, в которой графики FRR и FAR пересекаются. Но она далеко не всегда репрезентативна. При использовании биометрических систем, особенно системы распознавания по лицу, даже при введении корректных биометрических характеристик не всегда решение об аутентификации верно. Это связано с рядом особенностей и, в первую очередь , с тем, что многие биометрические характеристики могут изменяться. Существует определенная степень вероятности ошибки системы. Причем при использовании различных технологий ошибка может существенно различаться. Для систем контроля доступа при использовании биометрических технологий необходимо определить, что важнее не пропустить "чужого" или пропустить всех "своих".


Рис. 4.2.

Не только FAR и FRR определяют качество биометрической системы. Если бы это было только так, то лидирующей технологией было бы распознавание людей по ДНК, для которой FAR и FRR стремятся к нулю. Но ведь очевидно, что эта технология не применима на сегодняшнем этапе развития человечества. Поэтому важной характеристикой является устойчивость к муляжу, скорость работы и стоимость системы. Не стоит забывать и то, что биометрическая характеристика человека может изменяться со временем, так что если она неустойчива - это существенный минус. Также важным фактором для пользователей биометрических технологий в системах безопасности является простота использования. Человек, характеристики которого сканируются, не должен при этом испытывать никаких неудобств. В этом плане наиболее интересным методом является, безусловно, технология распознавания по лицу. Правда, в этом случае возникают иные проблемы, связанные в первую очередь , с точностью работы системы.

Обычно биометрическая система состоит из двух модулей: модуль регистрации и модуль идентификации.

Модуль регистрации "обучает" систему идентифицировать конкретного человека. На этапе регистрации видеокамера или иные датчики сканируют человека для того, чтобы создать цифровое представление его облика. В результате сканирования чего формируются несколько изображений. В идеальном случае, эти изображения будут иметь слегка различные ракурсы и выражения лица, что позволит получить более точные данные. Специальный программный модуль обрабатывает это представление и определяет характерные особенности личности, затем создает шаблон . Существуют некоторые части лица, которые практически не изменяются с течением времени, это, например, верхние очертания глазниц, области окружающие скулы, и края рта. Большинство алгоритмов, разработанных для биометрических технологий, позволяют учитывать возможные изменения в прическе человека, так как они не используют для анализа области лица выше границы роста волос. Шаблон изображения каждого пользователя хранится в базе данных биометрической системы.

Модуль идентификации получает от видеокамеры изображение человека и преобразует его в тот же цифровой формат, в котором хранится шаблон . Полученные данные сравниваются с хранимым в базе данных шаблоном для того, чтобы определить, соответствуют ли эти изображения друг другу. Степень подобия, требуемая для проверки, представляет собой некий порог, который может быть отрегулирован для различного типа персонала, мощности PC , времени суток и ряда иных факторов.

Идентификация может выполняться в виде верификации, аутентификации или распознавания. При верификации подтверждается идентичность полученных данных и шаблона, хранимого в базе данных. Аутентификация - подтверждает соответствие изображения, получаемого от видеокамеры одному из шаблонов, хранящихся в базе данных. При распознавании, если полученные характеристики и один из хранимых шаблонов оказываются одинаковыми, то система идентифицирует человека с соответствующим шаблоном.

4.3. Обзор готовых решений

4.3.1. ИКАР Лаб: комплекс криминалистического исследования фонограмм речи

Аппаратно-программный комплекс ИКАР Лаб предназначен для решения широкого круга задач анализа звуковой информации, востребованного в специализированных подразделениях правоохранительных органов, лабораториях и центрах судебной экспертизы, службах расследования летных происшествий, исследовательских и учебных центрах. Первая версия продукта была выпущена в 1993 году и явилась результатом совместной работы ведущих аудиоэкспертов и разработчиков программного обеспечения. Входящие в состав комплекса специализированные программные средства обеспечивают высокое качество визуального представления фонограмм речи. Современные алгоритмы голосовой биометрии и мощные инструменты автоматизации всех видов исследования фонограмм речи позволяют экспертам существенно повысить надежность и эффективность экспертиз. Входящая в комплекс программа SIS II обладает уникальными инструментами для идентификационного исследования: сравнительное исследование диктора, записи голоса и речи которого предоставлены на экспертизу и образцов голоса и речи подозреваемого. Идентификационная фоноскопическая экспертиза основывается на теории уникальности голоса и речи каждого человека. Анатомическое факторы: строение органов артикуляции, форма речевого тракта и ротовой полости, а также внешние факторы: навыки речи, региональные особенности, дефекты и др.

Биометрические алгоритмы и экспертные модули позволяют автоматизировать и формализовать многие процессы фоноскопического идентификационного исследования, такие как поиск одинаковых слов, поиск одинаковых звуков, отбор сравниваемых звуковых и мелодических фрагментов, сравнение дикторов по формантам и основному тону, аудитивные и лингвистические типы анализа. Результаты по каждому методу исследования представляются в виде численных показателей общего идентификационного решения.

Программа состоит из ряда модулей, с помощью которых производится сравнение в режиме "один-к-одному". Модуль "Сравнения формант" основан на термине фонетики - форманте, обозначающий акустическую характеристику звуков речи (прежде всего гласных), связанную с уровнем частоты голосового тона и образующую тембр звука. Процесс идентификации с использованием модуля "Сравнения формант" может быть разделен на два этапа: cначала эксперт осуществляет поиск и отбор опорных звуковых фрагментов, а после того как опорные фрагменты для известного и неизвестного дикторов набраны, эксперт может начать сравнение. Модуль автоматически рассчитывает внутридикторскую и междикторскую вариативность формантных траекторий для выбранных звуков и принимает решение о положительной/отрицательной идентификации или неопределенном результате. Также модуль позволяет визуально сравнить распределения выбранных звуков на скаттерограмме.

Модуль "Сравнение Основного Тона" позволяет автоматизировать процесс идентификации дикторов с помощью метода анализа мелодического контура. Метод предназначен для сравнения речевых образцов на основе параметров реализации однотипных элементов структуры мелодического контура. Для анализа предусмотрено 18 типов фрагментов контура и 15 параметров их описания, включая значения минимума, среднего, максимума, скорости изменения тона, эксцесса, скоса и др. Модуль возвращает результаты сравнения в виде процентного совпадения для каждого из параметров и принимает решение о положительной/отрицательной идентификации или неопределенном результате. Все данные могут экспортироваться в текстовый отчет.

Модуль автоматической идентификации позволяет производить сравнение в режиме "один-к-одному" с использованием алгоритмов:

  • Спектрально-форматный;
  • Статистика основного тона;
  • Смесь Гауссовых распределений;

Вероятности совпадения и различия дикторов рассчитываются не только для каждого из методов, но и для их совокупности. Все результаты сравнения речевых сигналов двух файлах, получаемые в модуле автоматической идентификации, основаны на выделении в них идентификационно значимых признаков и вычислении меры близости между полученными наборами признаков и вычислений меры близости полученных наборов признаков между собой. Для каждого значения этой меры близости во время периода обучения модуля автоматического сравнения были получены вероятности совпадения и различия дикторов, речь которых содержалась в сравниваемых файлах. Эти вероятности были получены разработчиками на большой обучающей выборке фонограмм: десятки тысяч дикторов, различные каналы звукозаписи, множество сессий звукозаписи, разнообразный тип речевого материала. Применение статистических данных к единичному случаю сравнения файл-файл требует учета возможного разброса получаемых значений меры близости двух файлов и соответствующей ей вероятности совпадения/различия дикторов в зависимости от различных деталей ситуации произнесения речи. Для таких величин в математической статистике предложено использовать понятие доверительного интервала. Модуль автоматического сравнения выводит численные результаты с учетом доверительных интервалов различных уровней, что позволяет пользователю увидеть не только среднюю надежность метода, но и наихудший результат, полученный на обучающей базе. Высокая надежность биометрического движка, разработанного компанией ЦРТ, была подтверждена испытаниями NIST (National Institute of Standards and Technology)

  • Некоторые методы сравнения являются полуавтоматическими (лингвистический и аудитивный анализы)
  • Аннотация.

    В статье приведены основные биометрические параметры. Рассмотрены методы идентификации, нашедшие широкое применение в России. Биометрическая идентификация способна решить задачу объединения всех существующих паролей пользователя к одному и применять его повсеместно. Процесс извлечения свойств отпечатка пальцев начинается с оценки качества изображения: вычисляется ориентация бороздок, которая в каждом пикселе отражает направление бороздки. Распознавание лиц - это самый приемлемый обществом метод биометрической идентификации. Идентификации личности по радужной оболочке глаза состоит из получения изображения, на котором локализуется радужная оболочка и составляется её код. В качестве двух основных характеристик любой биометрической системы можно использовать ошибки первого и второго рода. Идентификация на основе рисунка радужной оболочки глаза является одним из самых надёжных биометрических методов. Беcконтактный способ получения данных говорит о простоте использования и возможном внедрении в различные области.


    Ключевые слова: биометрические параметры, идентификация личности, отпечатки пальцев, распознавание лиц, радужная оболочка, биометрическая идентификация, алгоритм, базы данных, биометрические методы, пароль

    10.7256/2306-4196.2013.2.8300


    Дата направления в редакцию:

    24-05-2013

    Дата рецензирования:

    25-05-2013

    Дата публикации:

    1-4-2013

    Abstract.

    The article lists the main biometric parameters. The author reviews methods of identification that are used widely in Russia. Biometric identification helps to solve the problem of unification of all existing user passwords to one and apply it across the board. The process of extracting fingerprint features begins with an assessment of image quality is calculated orientation grooves which each pixel represents the direction of the grooves. Face Detection is the most acceptable method of biometric identification in society. Identification of the iris consists of image acquisition with localization of an iris and then forming a code of the iris. As the two main characteristics of any biometric system it is possible to use Type I and Type II errors. Identification based on the iris pattern of the eye is one of the most reliable biometric methods. Contactless method of obtaining data in this case suggests simplicity of use of this method in various areas.

    Keywords:

    Biometric identification, iris, face recognition, fingerprints, personal identification, biometrics, algorithm, database, biometric methods, password

    Введение

    Человек в современном обществе всё в большей степени нуждаются в обеспечении личной безопасности и безопасности производимых ими действий. Для каждого из нас необходимым атрибутом повседневной жизни становится надёжная авторизация: повсеместное применение банковских карт, сервисов электронной почты, совершение различных операций и пользование услугами - всё это требует идентификации личности. Уже сегодня мы вынуждены вводить десятки паролей, иметь при себе токен или другой идентифицирующий маркер. В такой ситуации остро встаёт вопрос: «А можно ли свести все существующие пароли к одному и применять его повсеместно, не опасаясь кражи или подмены?»

    Биометрические параметры

    Биометрическая идентификация способна решить данную задачу. Распознавание человека по биометрическим данным - это автоматизированный метод идентификации на основе физиологических (являются физическими характеристиками и измеряются в определённые моменты времени) и поведенческих (представляют собой последовательность действий и протекают в течение некоторого периода времени) черт. В таблице 1 перечислены основные из них.

    Таблица 1

    Биометрические параметры

    Применяются часто

    Применяются редко

    Физиологические

    Поведенческие

    Физиологические

    Поведенческие

    1. Отпечатки пальцев

    1. Подпись

    1. Сетчатка глаза

    1. Клав. почерк

    2. Походка

    3. Радужная оболочка

    3. Форма ушей

    4. Геометрия руки

    5. Отражение от кожи

    6. Термограмма

    Подробнее остановимся на трёх, распространённых в России.

    Отпечатки пальцев

    Отпечатки пальцев (рис. 1 а) представляют собой мелкие бороздки на внутренней поверхности ладони и ступни человека. Судебная экспертиза основывается на предположении, что не существует двух одинаковых отпечатков пальцев, принадлежащих разным людям.

    Для сравнения отпечатков эксперты используют множество деталей папиллярных узоров, имеющих следующие черты: конец бороздки, раздвоение бороздки, независимая бороздка, озеро, ответвление, перекрест и другие. Автоматические методы сравнения работают схожим образом. Процесс извлечения свойств отпечатка начинается с оценки качества изображения: вычисляется ориентация бороздок, которая в каждом пикселе отражает направление бороздки. Затем происходит сегментация бороздок и локализации деталей с последующим распознаванием.

    Геометрия лица

    Задача распознавания лиц идёт рука об руку с человеком с незапамятных времён. Паспорт, снабжённый фотографией, стал повсеместным и главным документом, удостоверяющим личность человека. Это самый приемлемый обществом метод биометрической идентификации. Простота фиксирования данного биометрического признака позволила составить большие базы данных: фотографии в правоохранительных органах, видеозаписи камер наблюдения, социальные сети и так далее.

    Источником получения изображения могут быть: оцифровке документы; камеры наблюдения; трёхмерные изображения; снимки в инфракрасном спектре.

    На полученном изображении локализуется лицо (рис. 1 б), затем применяется один из двух методов: внешний вид лица и геометрия лица. Предпочтительным является метод, основанный на анализе геометрии лица, история распознавания которого насчитывает тридцатилетнюю историю.

    Радужная оболочка глаза

    Радужная оболочка - цветная часть глаза между склерой и зрачком. Является, как и отпечатки пальцев фенотипической особенностью человека и развивается в течении первых месяцев беременности.

    Идея идентификации личности по радужной оболочке глаза была предложена офтальмологами ещё в 1936 году. Позднее, идея нашла своё отражение в некоторых фильмах. Например, в 1984 году был снят фильм про Джеймса Бонда «Никогда не говори никогда». И лишь в 1994 году появился первый автоматизированный алгоритм распознавания радужной оболочки глаза, разработанный математиком Джоном Даугманом. Алгоритм был запатентован и до сих пор лежит в основе систем распознавания радужной оболочки.

    Устройство по захвату изображения глаза, которое будет удобным для пользователя и незаметным, является одной из проблем. Ведь при этом оно должно считывать рисунок радужной оболочки не зависимо от условий освещения. Есть несколько подходов. Первый из них базируется на поиске лица и глаз, затем другая камера с увеличительным объективом получает высококачественное изображение радужной оболочки. Второй - требует, чтобы глаз человека находился внутри определённой области наблюдений одной камеры.

    На полученном изображении локализуется радужная оболочка и составляется её код (рис. 1 в). Даугман использовал двумерный фильтр Габора. Дополнительно создаётся маска, где изображение зашумлено (области наложения ресниц и век), которая накладывается на исходный код радужной оболочки. Для идентификации вычисляется расстояние Хэмминга (разница в битах между двумя шаблонами радужных оболочек), которое для одинаковых радужных оболочек будет наименьшим.

    Рисунок 1. Примеры биометрических параметров

    Статистические характеристики

    В качестве двух основных характеристик любой биометрической системы можно использовать ошибки первого и второго рода. В области биометрии наиболее устоявшиеся понятия - FAR (False Acceptance Rate) и FRR(False Rejection Rate). FAR характеризует вероятность ложного совпадения биометрических характеристик двух людей. FRR - вероятность отказа доступа человеку, имеющего допуск.

    В таблице 2 приведены средние показатели для различных биометрических систем

    Таблица 2

    Характеристики биометрических систем

    Следует отметить, что данные показатели варьируются в зависимости от используемых биометрических баз данных и применяемых алгоритмов, однако их качественное соотношение остаётся примерно одним. Анализируя эти данные, можно придти к выводу, что идентификация на основе рисунка радужной оболочки глаза является одним из самых надёжных биометрических методов. Безконтактный способ получения данных говорит о простоте использования и возможном внедрении в различные области.

     

    Возможно, будет полезно почитать: